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VIfllLANTE isanautornatecl recognition and tracking syste~n  that closely integrates asensing platforrn}vith
a very large processing capability (over 2 TeraOPS).  ‘1’lle architecture currently consists of an optical bench Jvith
multiple sensors, a large parallel analog pre-processor, ancl a digital 512 processor, parallel machine. Preliminary
results on target detection and orientation are presented for an algorithrll that is suitable for the \~IC; II, AATTE
architecture. ‘1’he technique makes LISe ofeig’envcctors calculated froln image blocks (size 32x32) cirawn  from vicleo
sequences containing rocket targets. l’he eigenvectors are usecl to recluce the climensionality  of frame-lets (size
32x32) from the larger sensor ilnages. ‘1’hese frame-lets are projected on to the eigetlvectors  and the resultant
values are then used as an input pattern to a feed forward I[eural  network classifier, A description and evaluation
of this algorithm (inclucling precisic)n  limitations) with res~mct  to VI GIIJANTI’l  is provicled.  Experiments using
this technique have generated near 99targct and nowtarget iruages aucl close to 97’%0 identification of the rocket
type
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1 Introduction

‘1’he VIGII,.AN”l’E  project seeks to clevelor) an integrated sensor, image processing system with the ability to
cletect, recognize ancl track a target object in real time (30 frames per seconcl).  l’o  accolnplish this, an analog
neural network processor (3 J) ANN’), clesignecl to perform 64 concurrent vector innrr procluct  opcratious ( lx4096
ciimensions) every 250 nauoseconc]s is LISeCl to process a 64x64  sui)-winc]ow  (fra]ne-]et) of a larger sensor ilnage.
A column or row loacling,  cli.gital to analog input clevice (C1,I~) call  grab 1 x64 pixels in an iu]age frame ancl
provicle  the neural processor with an analog 64x64  w’inclow of the ir[mge  at operating SIWCCIS.  A to[al of 64 separate
couvo]utions  of a 256x256 ir[lage  ant] t]ie 3])ANTN’s 64x64  masks cat] be I)erforrnecl  in abOUt 1 (i mill iseconcls, A
large, digital SIMI) computer provicles  post-processing support ancl image classification for the analog processor.

‘1’he a lgor i thms implcmetltecl  to perfor]ll tlic cletcctiotl  ancl rccog[~itiolt  futlctiolis llcecl to lnakc use of tile large
processing bandwidth provicled by tile analog processor to cfl’cctively  exploit its aclvautages over other processi[lg
systems. Fortunately, a large nurl]txr of image processing a[lcl understanding algorithms el[lp]oy  the iuller procluct
as a key component in ilnage evaluation. llnagc pre-f)rocessillg algorittlms sLIch as sharpcnillg, blurring, aucl edge
cletcction; tem~)late  matclking or sf)atial correlatio~l  aucl convolution algoritll[ns;  aucl cli[lmnsiouality reduction for
class i f icat ion;  em])loy  t.lle inner I)roduct.  ill clcrivi~~g their resIm:tive results. ItL this l)a~)er \vc clwcribe a clctection
and recognition neural net~vork  algoritlltn that is easily i[lL[jlernclitecl on tllc VI Gil, ANTrl’l;  arcl]itccturc, J$’c l)roviclc
l)rclilninary detectiol]  results using this classifier orL a seclue[lce  of rocket ilnagcry I)roviclccl by IIallistic M i s s i l e
I)efs71[se Orgaltization (IIJVII)O).



2 VIGI1,ANTE Description

‘1’he sensing component of \TIGll,AN’l’E,  calls for tlvo visual sensors (one ~vitll  cent rollable zooln lCUS), allcl a
sensor each for infra-red (lR) and ultra-violet ([J\’). ‘1’he se~ising  platform is to be mou[ltecl  on a gimbal to allow
real time tracking to be performed. Initial target accluisition and pointing is via tile  detcctiotl systcln or external
to J’IGII,ANT’E (e.g. racfar). An image (size 256x256) frolll a selected sensor is reacl into a frame buffer at vicleo
rates for usc by the rest of the system. ‘lhe control of the gimbal and the selection of the sensor is performed by
the control logic that sits on a host P6 machitle.

‘l’he processing path of VIGILANTII; consists of digital loading clevice (CI,IC) that trausfc)rms the cligital sensor
image to 64x64 analog windows that are then presented to the analog processor (31)ANN)  ill parallel. l’he analog
processor performs 64 concurrent inner proclucts  with its storecl  templates ancl outputs these values every ’250
nano-seconds.  These values are transformed back to cligital allcl feel into a 512 processor SILID  parallel computer
(1’01 )). It is here where the interpretation aucl classification algorithms are perfor[necl. l’llesc results are then sent

to a host processor which makes appropriate state changes for the VI GII,AN”l’I;  l[lachine.

‘l’he cent ra l  component  of  VIGILAN”l’E  is the 3DANN  moclule.  It has 64 64x64 cligitally specified weight
templates. ‘1’he inner product of each template and an analog conversion of a 64x64 frame-let froln the current
sensor window is evaluated every 250 nanoseconds resultitlg  in a 64 ditllensional output vector, v-

64X6-1

where c is a 64x64 input image and ‘1’ is the matrix clefiltecl by the  templates. ‘1’he templates in the 31) ANN moclule
are specified with 8 bit precision. A full set of tern~)lates  (64) can be loaclecl in a[~proxir[lately  1 milliseconcl.

‘1’he 31) ANN is supplied an analog 64x64 frame-let each operation by the CI, IC.  ‘J’lle CI,l C loacls  a sillglc
1x64 column or row of pixels from the buffered image each ti[ue step ancl co[lverts 64x64 pixels to analog values
which are then dumped to the 31) ANN in parallel for evaluation. ‘1’lle pixels are retained in the CI,l C circuitry in

digital format until shiftecl  out. All 64 cc)nvolutions  of a 256x256 irllage with the 64x64 31JANN  templates recluires
approximately 16 milliseconc]s.

In order to do template matching, tile CI,  IC also calculates the  energy of each colulnn  or row it loacls.  l’he
value is sent to the and provides this value to the 1 )0 1) which keeps track of the total erlergy  in the ~vinclo}v. ‘1’his is
important when trying to determine the illlage Iocatioll wit]) least ]nistnatch erlergy, M, for image I, ancl template
‘J’. It is clefinecl as follows-

~~f(~,C/) = ~([(?ll -t I/,71 + ~) -- T(7T7,  ?I))Z
7?1,71

expanding the right siclc givcs-

As we are generally interested in ttle template with least Irlistllatcll energy, fi[ldillg  tile  Illaximurn for the inner
procluct  b e t w e e n  1’ aucl I ~voulc] bc suflicie[lt  provicled  that  a l l  templates  iverc norrna]izecl  (Yve coulcl  ignore  the
1’2 t e r m )  ancl t h e  e n e r g y  o f  eactl winclow (tllc  12 tertn) colllcl be cletermillecl  lf the Wiuclc)}v energy term is ~lot
available concurrently }vitll the inner procluct  results fror[l  tlie  31)ANN,  tlic  convo]utioll outputs from each ternl)late
}VOUIC1  neecl tc) be storccl  ancl upclatecl  after tile nor[nalizatiol]  tert[ks Yvere calculatecl.  ‘I’l Lis ~voulcl siguifica]ltly clelay
I)rocessing  ancl limit the cffcctive[lcss of tcrnI)latc rl]atclling  ill \~lC;II,ANrJ’lI;.

‘1’IIc 64 analog va]ues generated I)y Llle 31) ANN atld  ttlc elK’rgy tci-nk calculated ill the ~1,]~-~ are cot)vertec]  to 8
bit cligital  values ancl are Ijassccl  into a 512 l]rocessc)r  SIMI) maclli[ie. lt consists of 4, 128 prc)ccssor  [; NA1’S boarcls,
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distributed by Adaptive Solutions in lkavcrton, Orcg’oll. ‘J’llc set of processors aud Illcrnory provide storage for
partial results, perform post-processitlg opcratio!ls  011 the 31) ANN  out~)ut,  and evaluate tile processed itlformatioll
for system control and ilnage unclerstauding. Figure 1 sbo~vs tile architectural layout of tile  ITIGII,  AN’l’l}  il]~ag,e
processi rig system

3 Rocket Imagery

’10 clevelop  and evaluate the algorithms used  to accomplish real time tracking of targets, the VIC1l I, ANI’K
team is currently collecting a suitable ciatabase of digital video itnages containing potelltial targets. Although the
VI GII,AN”J’I;  system sboulcl  be capable of tracking a ~vide range of target objects, this report concentra tes  ou

airborne rocket targets. ‘1’he database usecl for these prelinliuary tests was made available by IlhII)O and consists
of relatively long range, up Iookiug,  missile sequences

‘l’ypically,  a frame contaius a single target object in a clutter free sky. In general, IIO details of ttle missiles
can be made out in any of the frames, the target object consists of a few bright pixels (1 0-20) ancl in some cases,
an extensive plume. l’he images in the database suffer froln a slllall dynamic range and considerable noise which
can be attributed to digitization and the poor c]uality  of the video tape. There are three distinct image sequences,
each  with a different type of missile. ‘1’be sequences are froln 10-30 seconds in duration witl~ 30 individual frames

for each second. Figure 2 shows examples of the three missile sequences at the beginuiug,  middle, allcl end of the
digitized portion of video.

All images were linearly stretched o~rer tl~e entire 8 bit irlteusity  rarlge  and cropped to 256x256. Care \vas
taken to insure that the target was still present in each  of tile images. ‘1’be inciividual images Ivere labeled }vith
the location of the target witbin the frame arid the  directio[l of the plu[ne  with respect to the ilnage. ‘l’tie plulne
direction values could take any of the eight major compass headir]gs  (N, N\fT, \\7, S\\T, S, Sl~, I’~, Nit) where h’ indicates
the  top of the image. ‘1’lle data from the sequences were  diviclccl irlto  trainilug  ancl test sets

‘J’lle goal of the cletection algorithm is to clcter[lliue  tvbetber or not a target exists in a given }vindow ancl if it
does, proviclc  the direction of the p]urite.  ‘J’ilc trai[iir]g data is provided to set classifier parameters (by ]earr]ing
for example) while the testing data is used to evaluate the classifier (i.e. determine hoiv ~vell it generalizes to
novel  data). 4 ‘1’o facilitate this process tile trairling arid test set itnagcs were furttler moclifred  by extracting 32x32
non-target (selected rauclomly) and target patches fronl all of the ilnages, In adclition,  rotations ~vcre performed
on the target data to provide a rllore  corllpreberlsive test of hotll I)lllrl]c dircctior] arid  sensitivity of ttic  classifier
to orientation. “1’be size of the test ancl trainiug sets are 400 a[ld 1200 irl]ages  respectively lvitll  equal ]lumbers of
target ancl nomtarget patches. I;xarnplcs of tlic targets from each of the rl~issilc tyl)es alollg with ]Ion-targets can
be found irl ligure 3.

4 Algorithm llescription

‘lo  demonst ra te  tile flexibility of the  VI[; 11, A?Jrl’I’~ dmigrl  a[ld architecture }vitll rcs[wct to irtmgc  processing,,
a  de tec t ion  a lgor i thm sui table  for  the  s-ysterll is dcsrrilmd  and tcstcxl  orl tile  rocket iruagery. ‘J’lle algorithm was
developed ancl tested initially usitlg full floating I)oir]t [Jrcrisio[l  (4 bytes). Ill subsequelit cxpr-rinlcnts,  tllc  [)recisio[l
of  tlw t e m p l a t e s  al)d the resu]tarlt il]]]er [Jroduct  were  mstrictcd to S, 6, aid 4 bits to Jjrovide  a ]Ilorc  r e a l i s t i c
aI)I]raisal of the cxIJected  I)erforl]iarlce of suctl arl al.goritbtn  used ort Vl(; II, AN’1’lt.  ‘1’t~r  algorittim JVC e v a l u a t e d
on the rocket database corlsists of t!vo stages:

1 .  “1’t[e  ir[lagc  }virdow  to be evaluat,cd  is [)rojected Onto CiLCIL of 7/ distirlct lrlasks of tile sarlle CIit]lc[isic)rl:llity.
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Figure 2: I;xalnples of ilnagc secluence  fra[m%  it] tllc IIM 1)0 rocket data

Figure 3: l~xamlJles  of 32x32  Ivindows  extracted fortn  tllc da[al~asc  for traini[lg and evaluation.
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2. ‘1’he n d imensional  out[)ut vector serves as inIJut  to a classifier that determines if a target is prese]lt and if
it is, the direction of tllc plut]lc.

l~igure 4 shows the mapping of tllc algorithm to the J71CJI  I, AN’1’I; architecture. ‘1’he projections, a simple

iuner product,,  a r e  itnpl.slncnted  by tl~e 31) ANTN. ‘1’lIe CI, IC allcl l;rall~e Iluffer a r e used  to  select tllc  Jvinclo;v to

be eva]uatecl  and finally, tllc  1’01’ impletnc~it,s  ttlc classifier. in this study, a simple feed for}vard  neural net~rork

is used to classify the ~vitldows. A sitlgle  hiddcll layer el[ll)loyitlg  a sigmoid  act ivat ion! function  in its units ( t h e

nulnbcr of  uni t s  in this l a y e r  w a s  allowwl  to  vary)  feeds  5 out[)ut varial)les  labclecl-  tt~rget,  NT,  \$T)S, I;. Sinlilar
classifiers have been clevelopcd  ancl tested ou tile CN’A l]S [)rocmsors }Jroviding  satisfactory results .i’t  1

llach s u b - i m a g e  block is cvaluakd itdcpcndclltly I)y f i r s t  })rojecting  tlw 32x32  illiage patcllcs 011 e a c h  o f  n

]nasks a~ld then providing tllcse oul [~uts to t}w nr:ural  Ilctfvorli  for classification. ‘1’hc mask arc used to reduce tllc

dimensio[[ality  of  the d a t a  froln 32X32 to n. Sucli a reductiorl stlould si][lplify tile  utlderlying statistical proble[ll

by reducing the nu[nher of free I)aralnekrs and  c[lllatlcitlg tlw at)ility of the classifier to generalize. I)itncllsiolLaiity
reduction has been usccl reliably in a ]Iu[utjcr  of itllage recognition [Jrol~lelns (}vhere tile “curse of (Iill]cllsiollality”

is a [particularly pressing prol~lcl[l:’) iilcludi]lg  view
C1,l(; ,:3,5

i[lvariatlt ol)jcct rccogl]itiorl,lz’s”; face rccogllition- al]d
I 14,13ct[lotio[l  classification of faces. ‘



‘Yarget  Eimnvectors Nomtarget EiEenvectors

Figure 5: !i?igenvectors  developed from target  ancl nomtarget  32x32 patclm.

Of course the selection of the mask used to recluce  the c]imensionality of the data is of great importance. A
poor set of masks will decrease tile effective signal to noise ratio resulting in poor discrimination between targets
and nontargets. IIowever, finding a good set of filters almost invariably depends on the set of images being
evaluated. Clutter, occlusion, sensor noise, lighting depcrlclencies,  vie~vs, etc. make detection of even well modeled
objects extremely difficult. One approach used to nlininllze  SOHW  of tllcse ProbleIlls is to design the masks from
actual sensor views of the object. 15 ~IYl)ical]Y interesting featllres are located 011 tile  object or the object itself is

centered (as was the case for t]w rocket data) and pri[~cipal  coluponents  is Lisecl to rxtract a set of eigenvectors
ordered with respect to the variance (by eigenvalues).

The eigenvectors of a set of images, I, can beobtainecl  using tllc tecl]niclue  outlil~ed  by ‘lurk ancl ~’entlarlcl.1~
l’hey found the eigenvectors, Efll oftlie autocorrelation matrixhl (Af =: 1’1), by us ing  S\TD. A set ofeigenvectors
FjI, ofs~litable  di~l~er~siotL car] tlle[l  t>col>tail~ecl t>yl~latrix~ l~~lltii~licatioll-$j[  = lEAf. ‘l~vo such  sets ofeigenvectors
are presented in Figure 5. The set labelecl “rl’argct  I;igenvcctors’) was generated using the 32x32 targets in the
train ing set. l’lmotherset wasgeneratecl frorlltllclloll-target exa[ll[)les  irttt]e trailli]]g set. Doth  sets ofeigenvectors
have  bee[l  used successfully in dif[ercnt classificatiotl  tasks. O]le advantageof the llol~-target eigetlvcctors  is that,
tlleycol]lcl serve astl]ell~asks foralargc r]l]l~lber ofcliflerellt  classifiers lt'llereas thetarget eige]]lrectors  are[~rol>ably
only  suitable for the particular targets fro~n whicli  they were grrwratecl.  in these tests, the input  patterns to the
network  were  derivecl  from the lJrojectio[ls of the  image ol~ the tol) k eigenvectors of a singjc nlasli set (either
target or non-target).

A simple two layer, feecl-for~vard  net,}vork is used  to classify the projections of the image block onto the
eigenvectors  sets. Its hiclclen layer einploys a ]ioti-li[lcar sigmoicl  function anct the network is trained }vith back
propagation. 10 A })or.tio~) of t~le trailli[~g  set (a Iiold out  se t )  i s  reserved to  stop network learning in orcler to
enhance generalization. 4 ‘1’]lesitlll)leclesigl] oftl~efecd  for!vard  ]Iettvork  altowsforc  KLcient itll~jlel[lc[ltatiorlo ftlle
algorithm on the post-processing ]Ilacllillc. ‘1’heflctwork  isrcc]uirccl to[[mptlle mask outputs fortheitl}age t]locks
onto the associated 5 clil~lcrlsiollalc~[]![JL]t vector. I/or Ilo]l-targrt  [mttcr[ls, no error is back propagated in any of the
clirection fielcls- a silnIJledoll’t care state is ilicor[mratcd  i]lto  t}le net~vork to facilitate this as[)cct of tl~e n]apping
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Figure 6: g’he graph on the left presents tile fraction of test cases successfully identified vs. the number of nodes
in the hidden layer. The two curves represent individual classifier results with either the eigenvectors generated
by the targets or the non-targets. The dimensionality of the input pattern }vas 30. “1’he graph on the right sho}vs
the  same fraction vs. the size or uu[uber  of projectio]~s  on the two eigenvector  sets. Tile size of the hiclcleu layer
was fixed at 30nodes.

5  Itesults

Initial tests on the rocket imagery were used to cletcrl[liue  the architecture of the classifier ancl the nulnber of
projections on the cigenvector sets needed  to obtain goocl generalization. In these experiments, full floating point
p r e c i s i o n  w a s  usecl in both the eigenvectors and the actual patterlls preseutecl to tile neural net~vork \Ve felt
this was sufficient to provide a reasonable startilLg  point for tt~e arcl[itcctur-e and subseclueut experiments tended
to bear this out. ‘1’o determine if the ~leural network classifier could perform this c{ekction and clirectiou test,
we initially used full floating point precisio]l and variecl  the number of Ilodes  in the hidden layer to select an
architecture suitable for the problem. ‘1’llis was  done with both sets of eigen},ectors.  In acldition,  we examinecl the
performance of the classifier using different nu[nbers of projections, wllicb  changes the size of the i~lput pattern
presentec]  for classificatio~].  For the varying pattern size, ttlc IIur[lber  of hidden nocles  ~vas fixed at 30. ‘1’he size of
ttle pattern was  fixed at 35 when the Ilumber  of l]iclcle]l nodes was allo}ved to vary.

Figures 6 present the results of these tests. ‘1’lle graI)lis  sliow the  detection rate acllicved by the class i f iers
which is simply the number of correct obscrvatiol[s (target or non-target) clivicled by tl]e total Ilutllber of test
cases.  h’or the eigcnvectors  derivccl  fronl tile actual target data of the training set, detection rates apl)roaclliug
100% are achieved while the non-target cigellvectors lJroduce  results at around 92%. l’lume clirectiou (not SIIOIVU)
was correct]y idcntiflcd in about 90(X,  of t,t]e target cases. ‘1’l]is is a I]lore  diflicu]t task for tllc  uet}vork  in that most
of the imagery is without clutter and the target is quite bright with rcsl)cct to the background so that cletcctiou is
quite straight forward. I)etermining  the  I)lunle  direction of the 32x32  itnagcs of Figure 2 is quite difficult llo~vever,
even  for the human eye. Surprisingly, tllc identification rates are quite I]igll for Llle classifiers with both eigen~’ector
sets.

‘1’he second set of exlwrinlellts looks at the }Ic)w I[oise  ill ttlc systcln, as reflected by reduced precisio~l  ill ttlr
analog processing compou cuts, il[l])acts tllc detection and dircctiol] identification rates. Figure 7 examines the
impact  of  reducecl  precisio]l ill both the out[)ut c)f tlic  lwural [)rocessor  (ttle inl)cr  product of tllc  cigenvectors atid
the iluagc; io in the chart) and in tl]e actual values of tll(e rigct~vcctors  tllerusclvcs (the tern] )latc values stored i]~
t}w 31) ANT N).  In these set of tests, I)recisioll  }vas o~]ly exal[liilecl  for tlw target set of ei,gct[vectors.  ‘J’he tests }vcre
cor]duckd at full, 8 bit, 6 t)it, alid  4 }Jit precisio]l.



Figure 7: Classification rates for both non-target ar~d target eigcnvector sets using 30 projections (input,  dimek

sions) and 30 hidden nodes. ‘1’lw precision term indicates tl~e ]Iunltmr  of bits used  to represent both the eigeat’ectors
and the projection values.

—

IJigure  8: “J’he l e f t  panel presents tlw origiaal irnagc. Ikh 32X32 i~lock is first [jrojectcd  on the top 30 target
cigenvectors  (8 bit) atld tile resul tant  values (8 I)it)  arc IJresellted to the mural  network for classificatiorl.  ‘1’tw
right panel s h o w s  t h e  ouL[jut  of t,lw IIetwmrk (ill rcvcrsc l’idco).  Values t)clow O a r c  n~a[)[wd to  ( )  (w}litc  in the

~)anel).



As l~igure  T snows, recluccd  precision had  little effect OIL detection ill t]le rocket imagery .  \’cry higl)  detect ion

rates occurred at all levels of precision. ]Pigure 8 SIIOIVS  tllc r e s p o n s e  o f  the  c lass i f ier  to  cacli of tllc blocks
of  a  novel  image froln tk secluencc  (right panel) at 8 b i t  prec is ion  in  bott~ t}ic eigellvcrtors and the pat tern
representation. Significant degradation in direction pcrformal~ce appears after 6 bits. Only tlw 4 bit representation
of the eigenvectors  ancl the 31) ANN output significantly impacts the classifiers ability with respect to direction

Both clirection and detection have higtl classification rates with only a fc~v climensions ~vllich is beneficial in t~vo
ways. First,  it frees up additional template resources in tlie 31) ANN  for alternative mask for other classification
tasks. Second, it recluces  the complexity of the classifier and either frees resources in the PO1’  or decreases the
time needed to process the input pattern. Proviclecl that other target sets can be represented by SUCIL  a compact
pattern, this allows VIGJI, AN”l’E to conduct multi-way searches. In acldition, if the detection rate achievecl  by the

non-target eigenvectors  is acceptable, multiple classifiers can be run on the same projection values tvhich  ~vould
also increase the flexibility of the VJGII, AN”J’I; systelll ancl its at)ility to cope  with not’el  sit~lations.

6 Conc lus ion

We have described an algorithm that is easily inlIdernented in tile  \’IG1  I,ANT~’IIJ  architecture that provides very
good detection rates on rocket imagery supplied by IIM 1 JO. I’rovided precision can be maintained, tl~e algorithn~
also generates orientation information at rates over 90%.  Obviously tlw imagcr}‘ at tl{is early stage of the project

is quite simple. To provide detection, orientation, recognition in forlnation over a \vicfer range of targets, views,
and backgrounds will decrease these classification rates. ‘lo overcome the problems introcfucecl  by the additional

variables, we are currently examini[lg  a hierarchical control  and classification structure usins a similar methodology
that l>roceeds  through the various itnage understanding goals ill stages.
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